Package 'Hapi'

Title: Inference of Chromosome-Length Haplotypes Using Genomic Data of Single Gamete Cells
Description: Inference of chromosome-length haplotypes using a few haploid gametes of an individual. The gamete genotype data may be generated from various platforms including genotyping arrays and sequencing even with low-coverage. Hapi simply takes genotype data of known hetSNPs in single gamete cells as input and report the high-resolution haplotypes as well as confidence of each phased hetSNPs. The package also includes a module allowing downstream analyses and visualization of identified crossovers in the gametes.
Authors: Ruidong Li, Han Qu, Jinfeng Chen, Shibo Wang, Le Zhang, Julong Wei, Sergio Pietro Ferrante, Mikeal L. Roose, Zhenyu Jia
Maintainer: Ruidong Li <[email protected]>
License: GPL-3
Version: 0.0.3
Built: 2024-11-03 04:05:47 UTC
Source: https://github.com/cran/Hapi

Help Index


Hapi is a novel easy-to-use package that only requires 3 to 5 gametes to reconstruct accurate and high-resolution haplotypes of an individual. The gamete genotype data may be generated from various platforms including genotyping arrays and next generation sequencing even with low-coverage. Hapi simply takes genotype data of known hetSNPs in single gamete cells as input and report the high-resolution haplotypes as well as confidence level of each phased hetSNPs. The package also includes a module allowing downstream analyses and visualization of crossovers in the gametes.

Description

Hapi is a novel easy-to-use package that only requires 3 to 5 gametes to reconstruct accurate and high-resolution haplotypes of an individual. The gamete genotype data may be generated from various platforms including genotyping arrays and next generation sequencing even with low-coverage. Hapi simply takes genotype data of known hetSNPs in single gamete cells as input and report the high-resolution haplotypes as well as confidence level of each phased hetSNPs. The package also includes a module allowing downstream analyses and visualization of crossovers in the gametes.


Convert genotype coded in A/T/C/G to 0/1

Description

Convert base (A/T/C/G) coded genotype to numeric (0/1) coded

Usage

base2num(gmt, ref, alt)

Arguments

gmt

a dataframe of genotype data of gamete cells

ref

a character represents reference allele

alt

a character represents alternative allele

Value

a dataframe containing converted genotype

Author(s)

Ruidong Li

Examples

ref <- sample(c('A','T'),500, replace=TRUE)
alt <- sample(c('C','G'),500, replace=TRUE)

gmt <- data.frame(chr=rep(1,500), pos=seq_len(500),
    ref=ref, alt=alt, gmt1=ref, gmt2=alt, gmt3=ref,
    gmt4=ref, gmt5=c(alt[1:250], ref[251:500]),
    stringsAsFactors = FALSE)
    
gmtDa <- base2num(gmt=gmt[5:9], ref=ref, alt=alt)

Crossover information across all gamete cells

Description

Crossover information across all gamete cells


Haplotypes of a single gamete cell for visualization

Description

Haplotypes of a single gamete cell for visualization


Raw genotyping data

Description

Raw genotyping data


Consensus haplotype assembly

Description

Assemble the consensus high-resolution haplotypes

Usage

hapiAssemble(gmt, draftHap, keepLowConsistency = TRUE,
  consistencyThresh = 0.85)

Arguments

gmt

a dataframe of genotype data of gamete cells

draftHap

a dataframe with draft haplotype information

keepLowConsistency

logical, if low-consistent gamete cells should be kept

consistencyThresh

a numeric value of the threshold determining low-consistent gamete cells compared with the draft haplotype. Default is 0.85

Value

a dataframe containing phased haplotypes

Author(s)

Ruidong Li

Examples

finalDraft <- rep(0,500)
names(finalDraft) <- seq_len(500)

ref <- rep(0,500)
alt <- rep(1,500)

gmtDa <- data.frame(gmt1=ref, gmt2=alt, gmt3=ref,
gmt4=ref, gmt5=c(alt[1:250], ref[251:500]),
stringsAsFactors = FALSE)

idx1 <- sort(sample(seq_len(500), 30, replace = FALSE))
idx2 <- sort(sample(seq_len(500), 30, replace = FALSE))
idx3 <- sort(sample(seq_len(500), 30, replace = FALSE))

gmtDa[idx1,1] <- NA
gmtDa[idx2,2] <- NA
gmtDa[idx3,3] <- NA

consensusHap <- hapiAssemble(draftHap = finalDraft, gmt = gmtDa)

Assembly of haplotypes in regions at the end of a chromosome

Description

Assembly of haplotypes in regions at the end of a chromosome

Usage

hapiAssembleEnd(gmt, draftHap, consensusHap, k = 300)

Arguments

gmt

a dataframe of genotype data of gamete cells

draftHap

a dataframe with draft haplotype information

consensusHap

a dataframe of the consensus haplotype information

k

a numeric value for the number of hetSNPs that will be combined with markers beyond the framework for assembly. Default is 300

Value

a dataframe containing phased haplotypes

Author(s)

Ruidong Li

Examples

finalDraft <- rep(0,500)
names(finalDraft) <- seq_len(500)

ref <- rep(0,500)
alt <- rep(1,500)

gmtDa <- data.frame(gmt1=ref, gmt2=alt, gmt3=ref,
gmt4=ref, gmt5=c(alt[1:250], ref[251:500]),
stringsAsFactors = FALSE)

idx1 <- sort(sample(seq_len(500), 30, replace = FALSE))
idx2 <- sort(sample(seq_len(500), 30, replace = FALSE))
idx3 <- sort(sample(seq_len(500), 30, replace = FALSE))

gmtDa[idx1,1] <- NA
gmtDa[idx2,2] <- NA
gmtDa[idx3,3] <- NA

consensusHap <- data.frame(hap1=rep(0,500),hap2=rep(1,500),
total=rep(5,500),rate=rep(1,500),
confidence=rep('F',500),
stringsAsFactors = FALSE)
rownames(consensusHap) <- seq_len(500)

consensusHap <- hapiAssembleEnd(gmt = gmtDa, draftHap = finalDraft, 
consensusHap = consensusHap, k = 300)

Automatic inference of haplotypes

Description

Automatic inference of haplotypes

Usage

hapiAutoPhase(gmt, code = "atcg")

Arguments

gmt

a dataframe of genotype data of gamete cells

code

a character indicating the code style of genotype data. One of 'atcg' and '01'. Default is 'atcg'

Value

a dataframe of inferred consensus haplotypes

Author(s)

Ruidong Li

Examples

ref <- sample(c('A','T'),500, replace=TRUE)
alt <- sample(c('C','G'),500, replace=TRUE)

gmt <- data.frame(chr=rep(1,500), pos=seq_len(500),
    ref=ref, alt=alt, gmt1=ref, gmt2=alt, gmt3=ref,
    gmt4=ref, gmt5=c(alt[1:250], ref[251:500]),
    stringsAsFactors = FALSE)
    
hapOutput <- hapiAutoPhase(gmt=gmt, code='atcg')

Maximum Parsimony of Recombination (MPR) for proofreading of draft haplotypes

Description

Maximum Parsimony of Recombination (MPR) for proofreading of draft haplotypes

Usage

hapiBlockMPR(draftHap, gmtFrame, cvlink = 2, smallBlock = 100)

Arguments

draftHap

a dataframe with draft haplotype information

gmtFrame

a dataframe of raw genotype data in the framework

cvlink

a numeric value of number of cvlinks. Default is 2

smallBlock

a numeric value determining the size of small blocks that should be excluded from the draft haplotypes

Value

a dataframe of draft haplotypes after proofreading

Author(s)

Ruidong Li

Examples

ref <- rep(0,500)
alt <- rep(1,500)

gmtFrame <- data.frame(gmt1=ref, gmt2=alt, gmt3=ref,
gmt4=ref, gmt5=c(alt[1:250], ref[251:500]),
stringsAsFactors = FALSE)

idx1 <- sort(sample(seq_len(500), 30, replace = FALSE))
idx2 <- sort(sample(seq_len(500), 30, replace = FALSE))
idx3 <- sort(sample(seq_len(500), 30, replace = FALSE))

gmtFrame[idx1,1] <- NA
gmtFrame[idx2,2] <- NA
gmtFrame[idx3,3] <- NA

imputedFrame <- data.frame(gmt1=ref, gmt2=alt, gmt3=ref,
gmt4=ref, gmt5=c(alt[1:250], ref[251:500]),
stringsAsFactors = FALSE)

draftHap <- hapiPhase(imputedFrame)

finalDraft <- hapiBlockMPR(draftHap, gmtFrame, cvlink=2, smallBlock=100)

Filter out hetSNPs in potential complex regions

Description

Filter out hetSNPs in potential complex regions

Usage

hapiCVCluster(draftHap, minDistance = 1e+06, cvlink = 2)

Arguments

draftHap

a dataframe with draft haplotype information

minDistance

a numeric value of the distance between two genomic positions with cv-links. Default is 1000000

cvlink

a numeric value of number of cvlinks. Default is 2

Value

a dataframe of regions to be filtered out

Author(s)

Ruidong Li

Examples

ref <- rep(0,500)
alt <- rep(1,500)

imputedFrame <- data.frame(gmt1=ref, gmt2=alt, gmt3=ref,
gmt4=ref, gmt5=c(alt[1:250], ref[251:500]),
stringsAsFactors = FALSE)

draftHap <- hapiPhase(imputedFrame)
cvCluster <- hapiCVCluster(draftHap = draftHap, cvlink=2)

Histogram of crossover distance

Description

Histogram of crossover distance

Usage

hapiCVDistance(cv)

Arguments

cv

a dataframe of crossover information

Value

a histogram

Author(s)

Ruidong Li

Examples

data(crossover)
hapiCVDistance(cv=crossover)

Visualization of crossover map

Description

Visualization of crossover map

Usage

hapiCVMap(cv, chr = hg19, step = 5, gap = gap.hg19, x.limits = 6,
  y.breaks = NULL, y.labels = NULL)

Arguments

cv

a dataframe of crossover information

chr

a dataframe of chromosome information, including length, and centrometric regions

step

a numeric value of genomic interval in Mb. Default is 5

gap

a dataframe of unassembled regions with the first column is chromosme, the second column is start position, and third column is the end position of the gap. Default is gap for hg19. If no gap region is provided, use gap=NULL

x.limits

a numeric value of limits on x axis

y.breaks

a vector of positions to show labels on y axis. Default is NULL

y.labels

a vector of labels on the y axis. Default is NULL

Value

a plot of crossover map on all the chromosomes

Author(s)

Ruidong Li

Examples

data(crossover)
hapiCVMap(cv=crossover)

Histogram of crossover resolution

Description

Histogram of crossover resolution

Usage

hapiCVResolution(cv)

Arguments

cv

a dataframe of crossover information

Value

a histogram

Author(s)

Ruidong Li

Examples

data(crossover)
hapiCVResolution(cv=crossover)

Filter out hetSNPs with potential genotyping errors

Description

Filter out hetSNPs with potential genotyping errors

Usage

hapiFilterError(gmt, hmm = NULL)

Arguments

gmt

a dataframe of genotype data of gamete cells

hmm

a list containing probabilities of a HMM. Default is NULL

Value

a dataframe of genotype data of gamete cells

Author(s)

Ruidong Li

Examples

ref <- rep(0,500)
alt <- rep(1,500)

gmt <- data.frame(gmt1=ref, gmt2=alt, gmt3=ref,
    gmt4=ref, gmt5=c(alt[1:250], ref[251:500]),
    stringsAsFactors = FALSE)
    
idx <- sort(sample(seq_len(500), 10, replace = FALSE))
gmt[idx,1] <- 1

gmtDa <- hapiFilterError(gmt = gmt)

Selection of hetSNPs to form a framework

Description

Selection of hetSNPs to form a framework

Usage

hapiFrameSelection(gmt, n = 3)

Arguments

gmt

a dataframe of genotype data of gamete cells

n

a numeric value of the minumum number of gametes with observed genotypes at a locus

Value

a dataframe of genotype data of gamete cells

Author(s)

Ruidong Li

Examples

ref <- rep(0,500)
alt <- rep(1,500)

gmt <- data.frame(gmt1=ref, gmt2=alt, gmt3=ref,
gmt4=ref, gmt5=c(alt[1:250], ref[251:500]),
stringsAsFactors = FALSE)

idx <- sort(sample(seq_len(500), 10, replace = FALSE))

gmt[idx,1] <- NA
gmt[idx,2] <- NA
gmt[idx,3] <- NA

gmtFrame <- hapiFrameSelection(gmt = gmt, n = 3)

Visualization of haplotypes in a single gamete cell

Description

Visualization of haplotypes in a single gamete cell

Usage

hapiGameteView(hap, chr = hg19, hap.color = c("deepskyblue2",
  "darkorange2"), centromere.fill = "black", x.breaks = NULL,
  x.labels = NULL, y.breaks = NULL, y.labels = NULL)

Arguments

hap

a dataframe of all the phased hetSNPs in all chromosomes

chr

a dataframe of chromosome information, including length, and centrometric regions

hap.color

a vector of colors for the two haplotypes. Default is c('deepskyblue2','darkorange2')

centromere.fill

a character of the color for the centromeres. Default is 'black'

x.breaks

a vector of positions to show labels on x axis. Default is NULL

x.labels

a vector of labels on the x axis. Default is NULL

y.breaks

a vector of positions to show labels on y axis. Default is NULL

y.labels

a vector of labels on the y axis. Default is NULL

Value

a plot of haplotypes in a single gamete cell

Author(s)

Ruidong Li

Examples

data(gamete11)
hapiGameteView(hap=gamete11)

Indentify crossovers in gamete cells

Description

Indentify crossovers in gamete cells

Usage

hapiIdentifyCV(hap, gmt, hmm = NULL)

Arguments

hap

a dataframe of the two haplotypes

gmt

a dataframe of genotype data of gamete cells

hmm

a list containing probabilities of a HMM. Default is NULL

Value

a dataframe containing crossover information in each gamete cell

Author(s)

Ruidong Li

Examples

ref <- sample(c('A','T'),500, replace=TRUE)
alt <- sample(c('C','G'),500, replace=TRUE)

hap <- data.frame(hap1=ref, hap2=alt, stringsAsFactors = FALSE)
rownames(hap) <- seq_len(500)

gmt <- data.frame(gmt1=ref, gmt2=alt, gmt3=ref,
    gmt4=ref, gmt5=c(alt[1:250], ref[251:500]),
    stringsAsFactors = FALSE)
    
cvOutput <- hapiIdentifyCV(hap=hap, gmt=gmt)

Imputation of missing genotypes in the framework

Description

Imputation of missing genotypes in the framework

Usage

hapiImupte(gmt, nSPT = 2, allowNA = 0)

Arguments

gmt

a dataframe of genotype data of gamete cells in the framework

nSPT

a numeric value of the minumum number of supports for an imputation

allowNA

a numeric value of the maximum number of gametes with NA at a locus

Value

a dataframe of imputed genotypes in the framework

Author(s)

Ruidong Li

Examples

ref <- rep(0,500)
alt <- rep(1,500)

gmtFrame <- data.frame(gmt1=ref, gmt2=alt, gmt3=ref,
gmt4=ref, gmt5=c(alt[1:250], ref[251:500]),
stringsAsFactors = FALSE)

idx1 <- sort(sample(seq_len(500), 30, replace = FALSE))
idx2 <- sort(sample(seq_len(500), 30, replace = FALSE))
idx3 <- sort(sample(seq_len(500), 30, replace = FALSE))

gmtFrame[idx1,1] <- NA
gmtFrame[idx2,2] <- NA
gmtFrame[idx3,3] <- NA
imputedFrame <- hapiImupte(gmtFrame, nSPT=2, allowNA=0)

Phase draft haplotypes by majority voting

Description

Phase draft haplotypes by majority voting

Usage

hapiPhase(gmt)

Arguments

gmt

a dataframe of imputed genotype data of gamete cells

Value

a dataframe of inferred draft haplotypes

Author(s)

Ruidong Li

Examples

ref <- rep(0,500)
alt <- rep(1,500)
imputedFrame <- data.frame(gmt1=ref, gmt2=alt, gmt3=ref, 
gmt4=ref, gmt5=c(alt[1:250], ref[251:500]),
stringsAsFactors = FALSE)
draftHap <- hapiPhase(gmt=imputedFrame)

Chromosome information of hg19

Description

Chromosome information of hg19


Convert genotype coded in 0/1 to A/T/C/G

Description

Convert numeric (0/1) coded genotype to base (A/T/C/G) coded

Usage

num2base(hap, ref, alt)

Arguments

hap

a dataframe of consensus haplotypes

ref

a character represents reference allele

alt

a character represents alternative allele

Value

a dataframe containing converted haplotypes

Author(s)

Ruidong Li

Examples

ref <- sample(c('A','T'),500, replace=TRUE)
alt <- sample(c('C','G'),500, replace=TRUE)

consensusHap <- data.frame(hap1=rep(0,500),hap2=rep(1,500),
    total=rep(5,500),rate=rep(1,500),
    confidence=rep('F',500),
    stringsAsFactors = FALSE)
rownames(consensusHap) <- seq_len(500)

hap <- num2base(hap=consensusHap, ref=ref, alt=alt)